ในเรื่องปฏิกิริยาเคมี สมดุลเคมี (อังกฤษ: Chemical equilibrium) คือสภาวะที่ความเข้มข้นของสารตั้งต้นและสารผลิตภัณฑ์ไม่เปลี่ยนแปลงอีกแม้เวลาผ่านไป เราจะเรียกว่าปฏิกิริยาเคมีนั้นอยู่ในสมดุล (equilibrium) ทั้งนี้ การดำเนินไปของปฏิริยาไม่ได้สิ้นสุดลงแต่ระบบยังคงมีการเปลี่ยนแปลงอยู่ตลอดเวลา เรียกว่า สมดุลไดนามิก (dynamic equilibrium)
การศึกษาสมดุลเคมี
แนวคิดเกี่ยวกับสมดุลเคมี ได้เริ่มพัฒนาขึ้นหลังจากการศึกษาของ โคล้ด หลุยส์ แบร์โธเล่ต์ (Claude Louis Berthollet) นักเคมีชาวฝรั่งเศส ที่พบว่าปฏิกิริยาเคมีบางชนิดเป็นปฏิกิริยาผันกลับได้ (reversible reaction) โดยในสมดุลเคมีนั้น อัตราการเกิดปฏิกิริยาไปข้างหน้า (forward reaction) จะเท่ากับอัตราการเกิดปฏิกิริยาย้อน กลับ (backward หรือ reverse reaction) สมการต่อไปนี้ เป็นการแสดงสมดุลเคมีของปฏิกิริยาระหว่างสาร A และ สาร B เกิดเป็นสาร S และ สาร T โดยที่ α, β, σ และ τ เป็นสัมประสิทธิ์ปริมาณสัมพันธ์ (stoichiometric coefficient) ของปฏิกิริยาดังกล่าว
ถ้าหากปฏิกิริยาเกิดไปข้างหน้าได้มากๆ ความเข้มข้นของสารตั้งต้น A แฃะสาร B เหลือน้อยมากๆ อาจจะกล่าวอีกนัยหนึ่ง คือ มี สมบูรณ์ของปฏิกิริยา (reaction completeness) สูง หรือถ้าปฏิกิริยาย้อนกลับเกิดได้ดีมากๆทำให้ความเข้มข้นของสาร A และสาร B สูงในขณะที่ความเข้มข้นของสาร S และ T น้อยมาก อาจกล่าวได้ว่าปฏิกิริยาเกิดได้ไม่สมบูรณ์ ดังนั้น การอธิบายปฏิกิริยาเคมีในสมดุลจึงสามารถบอกความสมบูรณ์ของปฏิกิริยาได้ ซึ่งการคำนวณจะเกี่ยวข้องกับ ค่าคงที่สมดุลเคมี (chemical equilibrium:K)
ค่าคงที่สมดุล[แก้]
ในปฏิกิริยาเคมีที่ผันกลับได้ทั่วๆไปต่อไปนี้
ค่าคงที่สมดุลไดนามิกส์ (K)ถูกนิยามขึ้น โดย สหภาพเคมีบริสุทธิ์และเคมีประยุกต์ระหว่างประเทศ (IUPAC )ดังนี้
เมื่อ {A} คือ แอกทิวิตี (activity)ของสาร A, {B} คือ แอกทิวิตีของสาร B, ... ทั้งนี้ การแสดงความสัมพันธ์ข้างต้น เป็นการพิจารณาการเปลี่ยนแปลงพลังงานอิสระกิ๊บส์ (Gibbs free energy) แต่ในทางปฏิบัติแล้ว เรานิยมใช้ความเข้มข้นของสาร อาทิ [A], [B], ... มากกว่าการใช้แอกทิวิตี และใช้ ผลหารความเข้มข้น (concentration quotient, Kc) มากกว่า K ดังสมการ
เมื่อ Kc เท่ากับค่าคงที่สมดุลทางเทอร์โมไดนามิกส์ หารด้วย ผลหารสัมประสิทธิ์แอกทิวิตี (quotient of activity coefficients) เมื่อมีค่าเท่ากับ 1 จะได้ว่า Kc = K
ตัวอย่างสมดุลเคมีที่สำคัญ
สมดุลกรด-เบส
ปฏิกิริยากรด-เบสของกรดอ่อนหรือเบสอ่อนซึ่งเป็นปฏิกิริยาผันกลับได้นั้น การพิจารณาการแตกตัวของกรดอ่อนหรือเบสอ่อนมีความสำคัญมาก โดยค่าคงที่สมดุลของปฏิกิริยาการแตกตัวของกรดจะเรียกว่า ค่าคงที่การแตกตัวของกรด (acid dissociation constant, Ka)
- HA ⇌ A− + H+
โดยความหมายในทางเคมีของค่าคงที่นี้บ่งบอกความสมบูรณ์ของการแตกตัวของกรด หรือบอกความแรงของกรดนั่นเอง ซึ่งปกติแล้วค่าคงที่การแตกตัวของกรดมีค่าน้อยมาก จึงนิยมแสดงในรูปของค่า pKa ซึ่งกำหนดให้เท่ากับ -log (Ka) ตารางต่อไปนี้แสดงตัวอย่างของค่าคงที่การแตกตัวของกรดอ่อนบางชนิด
สมดุล ค่า pKa H3PO4 ⇌ H2PO4− + H+ pKa1 = 2.15 H2PO4− ⇌ HPO42− + H+ pKa2 = 7.20 HPO42− ⇌ PO43− + H+ pKa3 = 12.37 [VO2(H2O)4]+ ⇌ H3VO4 + H+ + 2H2O pKa1 = 4.2 H3VO4 ⇌ H2VO4− + H+ pKa2 = 2.60 H2VO4− ⇌ HVO42− + H+ pKa3 = 7.92 HVO42− ⇌ VO43− + H+ pKa4 = 13.27 สมดุลการละลาย
การละลายของสารประกอบไอออนิกในน้ำได้น้อยแล้วเกิดการแตกตัวเป็นไอออน จะอยู่ในสมดุลเคมีของการละลาย เช่น การละลายน้ำของเกลือแคลเซียมซัลเฟต ดังสมการต่อไปนี้ค่าคงที่ของการละลายทางเทอร์โมไดนามิกส์ของแคลเซียมซัลเฟตจะเป็น ดังนี้เมื่อ K ค่าคงที่ของการละลายทางเทอร์โมไดนามิกส์ และคำนวณโดยใช้ค่าแอกทิวิตีของไอออนต่างๆในระบบ อย่างไรก็ตาม ของแข็งมีค่าแอกทิวิตีเท่ากับ 1 และเมื่อเราพิจารณาโดยใช้ความเข้มข้นของไอออนค่าคงที่จะเรียกว่า ค่าคงที่ผลคูณไอออน (ionic solubility product: Ksp)หลักของเลอชาเตลิเย
ในทางเคมี การทำนายทิศทางการเปลี่ยนแปลงของสมดุลเคมีจะอาศัย หลักของเลอชาเตอลิเย(Le Chatelier's principle) ซึ่งถูกเสนอขึ้นโดยนักเคมีชาวฝรั่งเศสชื่อ อ็องรี หลุยส์ เลอ ชาเตอลิเย (Henri Louis Le Châtelier) โดยหลักการนี้มีใจความสำคัญว่าถ้าระบบที่อยู่ในสมดุลเคมีถูกรบกวนโดยการเปลี่ยนแปลงความเข้มข้นอุณหภูมิ ปริมาตร หรือความดันย่อย สมดุลจะมีการเลื่อนตำแหน่ง (shift) เพื่อลดการรบกวนนั้น เพื่อเข้าสู่สมดุลอีกครั้งหนึ่งหลักการนี้มีความสำคัญในทางอุตสาหกรรมเคมีเป็นอย่างมาก เช่น อุตสาหกรรมการผลิตแอมโมเนีย ดังสมการ
ปฏิกิริยานี้ มีเอนทัลปี, ΔH° = -46,11 kJ/mol ซึ่งเป็นปฏิกิริยาคายความร้อน การลดอุณหภูมิจะเป็นการรบกวนสมดุลโดยเป็นการลดพลังงานความร้อนระบบจะปรับตัวให้เพิ่มความร้อนโดยการเลื่อนสมดุลไปข้างหน้า ทำให้ระบบมีความเข้มข้นของแอมโมเนียเพิ่มขึ้นด้วย ตารางต่อไปนี้แสดงค่า Kc ที่เปลี่ยนแปลงตามอุณหภูมิ
ค่า Kc อุณหภูมิ (°C) Kc 300 4.34 x 10−3 400 1.64 x 10−4 450 4.51 x 10−5 500 1.45 x 10−5 550 5.38 x 10−6 600 2.25 x 10−6
ไม่มีความคิดเห็น:
แสดงความคิดเห็น